
Software-Driven Hardware Development

Myron King, Jamey Hicks, John Ankcorn
Quanta Research Cambridge

{myron.king,jamey.hicks,john.ankcorn}@qrclab.com

ABSTRACT
The cost and complexity of hardware-centric systems can
often be reduced by using software to perform tasks which
don’t appear on the critical path. Alternately, the perfor-
mance of software can sometimes be improved by using spe-
cial purpose hardware to implement tasks which do appear
on the critical path. Whatever the motivation, most mod-
ern systems are composed of both hardware and software
components.

Given the importance of the connection between hardware
and software in these systems, it is surprising how little auto-
mated and machine-checkable support there is for co-design
space exploration. This paper presents the Connectal frame-
work, which enables the development of hardware accelera-
tors for software applications by generating hardware/soft-
ware interface implementations from abstract Interface De-
sign Language (IDL) specifications.

Connectal generates stubs to support asynchronous re-
mote method invocation from software to software, hardware
to software, software to hardware, and hardware to hard-
ware. For high-bandwidth communication, the Connectal
framework provides comprehensive support for shared mem-
ory between hardware and software components, removing
the repetitive work of processor bus interfacing from project
tasks.

This framework is released as open software under an MIT
license, making it available for use in any projects.

Categories and Subject Descriptors
B.4.3 [INPUT/OUTPUT AND DATA COMMUNI-
CATIONS]: Interconnections (subsystems)—Interfaces;
Asynchronous/synchronous operation

Keywords
Connectal; Design Exploration; Software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’15, February 22–24, 2015, Monterey, California, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3315-3/15/02 ...$15.00.
10.1145/2684746.2689064.

1. INTRODUCTION
Because they are so small and inexpensive, processors

are now included in all but the smallest hardware designs.
This grants flexibility to hardware designers because the
non-performance-critical components can be implemented
in software and the performance-critical components can be
implemented in hardware. Using software for parts of the
design can decrease the effort required to implement config-
uration and orchestration logic (for example). It can also of-
fer hardware developers greater adaptability in meeting new
project requirements or supporting additional applications.

As a system evolves through design exploration, the bound-
ary between the software and hardware pieces can change
substantially. The old paradigm of “separate hardware and
software designs before the project starts” is no longer sus-
tainable, and hardware teams are increasingly responsible
for delivering significant software components.

Despite this trend, hardware engineers find themselves
with surprisingly poor support for the development of the
software that is so integral to their project’s success. They
are often required to manually develop the necessary soft-
ware and hardware to connect the two environments. In the
software world, this is equivalent to manually re-creating
header files from the prose description of an interface imple-
mented by a library. Such ad hoc solutions are tedious, frag-
ile, and difficult to maintain. Without a consistent frame-
work and toolchain for jointly managing the components
of the hardware/software boundary, designers are prone to
make simple errors which can be expensive to debug.

The goal of our work is to support the flexible and con-
sistent partitioning of designs across hardware and software
components. We have identified the following four goals as
central to this endeavor:

• Connect software and hardware by compiling interface
declarations.

• Enable concurrent access to hardware accelerators from
software.

• Enable high-bandwidth sharing of system memory with
hardware accelerators.

• Provide portability across platforms (CPU, OS, bus
types, FPGAs).

In this paper, we present a software-driven hardware de-
velopment framework called Connectal. Connectal consists
of a fully-scripted tool-chain and a collection of libraries
which can be used to develop production quality applica-
tions comprised of software components running on CPUs

communicating with hardware components implemented in
FPGA or ASIC.

When designing Connectal, our primary goal was to create
a collection of components which are easy to use for simple
implementations and which can be configured or tuned for
high performance in more complicated applications. To this
end, we adopted a decidedly minimalist approach, attempt-
ing to provide the smallest viable programming interface
which can guarantee consistent access to shared resources in
a wide range of software and hardware execution environ-
ments. Because our framework targets the implementation
of performance-critical systems rather than their simulation,
we have worked hard to remove any performance penalty as-
sociated with its use.

We wrote the hardware components of the Connectal li-
braries in Bluespec SystemVerilog[1, 2, 3] (BSV) because it
enables a higher level of abstraction than the alternatives
and supports parameterized types. The software compo-
nents are implemented in C/C++. We chose Bluespec in-
terfaces as the interface definition language (IDL) for Con-
nectal’s interface compiler.

This paper describes the Connectal framework, and how
it can be used to flexibly move between a variety of software
environments and communication models when mapping ap-
plications to platforms with connected FPGAs and CPUs.

Paper Organization: In Section 2, we present the running
example in a number of different execution environments. In
Section 3, we give an overview of the Connectal framework
and its design goals. In Section 4 we discuss the details of
Connectal and how it can be used to implement the exam-
ple. Section 5 describes the implementation of Connectal,
supported platforms, and the tool chain used to coordinate
the various parts of the framework. The paper concludes
with a discussion of performance metrics and related work.

2. ACCELERATING STRING SEARCH
The structure of a hardware/software (HW/SW) system

can evolve quite dramatically to reflect changing require-
ments, or during design exploration. In this section, we
consider several different implementations of a simple string
search application [4]. Each variation represents a step in
the iterative refinement process, intended to enhance perfor-
mance or enable a different software execution environment.

Host%System% PCIe%Expansion%Card%

%flash%chip%

%flash%chip%

%flash%chip%

%flash%chip%

FPGA%

%System%%
Memory%

CPU%

DDR%
PCIe%

Figure 1: Target platform for string search applica-
tion

Figure 1 shows the target platform for our example. The
pertinent components of the host system are the multi-core
CPU, system memory, and PCI Express (PCIe) bus. The
software components of our application will be run on the
CPU in a Linux environment. Connected to the host is
a PCIe expansion card containing (among other things) a
high-performance FPGA chip and a large array of flash mem-
ory. The FPGA board was designed as a platform to accel-
erate “big data” analytics by moving more processing power
closer to the storage device.

2.1 Initial Implementation

External)
Device) Flash)Memory)Array)

FPGA)
Accelerator)Hardware)

Linux))
Kernel) Device)Driver)

User))
Space) String)Search)ApplicaBon)

Figure 2: Logical components of the string search
system

The design process really begins with a pure software im-
plementation of the algorithm, but the first attempt we con-
sider is the initial inclusion of HW acceleration shown in Fig-
ure 2. The search functionality is executed by software run-
ning in user-space which communicates with the hardware
accelerator through a device driver running in the Linux ker-
nel. The hardware accelerator, implemented in the FPGA
fabric, executes searches over data stored in the flash array
as directed by the software.

The FPGA has direct access to the massive flash memory
array, so if we implement the search kernel in hardware, we
can avoid bringing data into the CPU cache (an important
consideration if we intend to run other programs simultane-
ously). By exploiting the high parallelism of the execution
fabric as well as application aware caching of data, an FPGA
implementation can outperform the same search executed on
the CPU.

2.2 Multithreading the Software
The efficient use of flash memory requires a relatively so-

phisticated management strategy. Our first refinement is
based on the observation that there are four distinct tasks
which the application software executes (mostly) indepen-
dently:

• Send search command to the hardware.

• Receive search results from the hardware.

• Send commands to the hardware to manage the flash
arrays

• Receive responses from the flash management hard-
ware

To exploit the task-level parallelism in our application, we
can assign one thread to each of the four enumerated tasks.
To further improve efficiency, the two threads receiving data
from the hardware put themselves to sleep by calling poll
and are woken up only when a message has been received.

External)
Device) Flash)Memory)Array)

FPGA)
Accelerator)Hardware)

Linux))
Kernel) Device)Driver)

User))
Space) Flash)Management) String)Search)mutex)

Figure 3: Using a mutex to coordinate user-level
access to hardware accelerator

With the introduction of multithreading, we will need a
synchronization mechanism to enforce coherent access to the
hardware resources. Because the tasks which need coordi-
nating are all being executed as user-space threads, the ac-
cess control must be implemented in software as well. As
shown in Figure 3, a mutex is used to coordinate access to
the shared hardware resource between user-level processes.

2.3 Refining the Interfaces

External)
Device) Flash)Memory)Array)

FPGA)
Accelerator)Hardware)

Linux))
Kernel)

User))
Space) String)Search)

Device)Driver)
Legacy)File)System)

Flash)Management)

Figure 4: Movement of functionality from user to
kernel space. Software-based coordination between
kernel and user processes are prohibitively expen-
sive.

Figure 4 shows a further refinement to our system in which
we have reimplemented the Flash Management functional-
ity as a block-device driver. Instead of directly operating
on physical addresses, the string search now takes a file de-
scriptor as input and uses a Linux system-call to retrieve
the file block addresses through the file system. This refine-
ment permits other developers to write applications which
can take advantage of the accelerator without any knowl-
edge of the internal details of the underlying storage device.
It also enables support for different file systems as we now
use a POSIX interface to generate physical block lists for the
the storage device hardware. The problem with this refine-
ment is that we no longer have an efficient SW mechanism to
synchronize the block device driver running in kernel space
with the application running in user space.

External)
Device) Flash)Memory)Array)

FPGA)

User))
Space) String)Search)

Legacy)File)System) Device)Driver)

Storage)Interface) Accelerator)Interface)

Accelerator)Hardware)

Linux))
Kernel)

Device)Driver)
Legacy)File)System)

Flash)Management)

Figure 5: Correct interface design removes the need
for coordination between user and kernel threads.

To solve to this problem (shown in Figure 5), we can re-
move the need for explicit SW coordination altogether by
giving each thread uncontested access to its own dedicated
HW resources mapped into disjoint address regions. (There
will of course be implicit synchronization through the file
system.)

2.4 Shared Access to Host Memory
In the previous implementations, all communication be-

tween hardware and software takes place through memory
mapped register IO. Suppose that instead of searching for

single strings, we want to search for large numbers of (po-
tentially lengthy) strings stored in the flash array. Attempt-
ing to transfer these strings to the hardware accelerator us-
ing programmed register transfers introduces a performance
bottleneck. In our final refinement, the program will allo-
cate memory on the host system, populate it with the search
strings, and pass a reference to this memory to the hardware
accelerator which can then read the search strings directly
from the host memory.

External)
Device) Flash)Memory)Array)

FPGA)

User))
Space) String)Search)

Legacy)File)System) Device)Driver)

Storage)Interface) Accelerator)Interface)
Accelerator)Hardware)

Linux))
Kernel) Legacy)File)System)

Flash)Management)
PortalMem) PCIePortal)

Figure 6: Connectal support for DMA.

Efficient high-bandwidth communication in this style re-
quires the ability to share allocated memory regions between
hardware and software processes without copying. Nor-
mally, a programmer would simply call application space
malloc, but this does not provide a buffer that can be
shared with hardware or other software processes. As shown
in Figure 6, a special-purpose memory allocator has been
implemented in Linux, using dmabuf[5] to provide reference
counted sharing of memory buffers across user processes and
hardware.

To conclude, we consider how the HW/SW interface
changed to accommodate each step in the refinement pro-
cess: The hardware interface required by the design in Fig-
ure 2 is relatively simple. Command/response queues in
the hardware accelerator are exposed using a register inter-
face with accompanying “empty”/“full” signals. To support
the use of poll by the refinement in Figure 3, interrupt sig-
nals must be added to the hardware interface and connected
to the Linux kernel. Partitioning the address space as re-
quired by the refinement in Figure 5 necessitates a consistent
remapping of registers in both hardware and software.

3. THE CONNECTAL FRAMEWORK
In and of themselves, none of the HW/SW interfaces con-

sidered in Section 2 are particularly complex. On the other
hand, implementing the complete set and maintaining cor-
rectness as the application evolves is a considerable amount
of care, requiring deep understanding of both the application
and the platform. The Connectal framework is a collection
of tools and library components which was designed to ad-
dress these challenges with the following features:

• Easy declaration and invocation of remote methods
between application components running on the host
or in the FPGA.

• Direct user-mode access to hardware accelerators from
software.

• High performance read and write bus master access to
system memory from the FPGA

• Infrastructure for sharing full speed memory port ac-
cess between an arbitrary number of clients in the
FPGA fabric

• Portability across platforms using different CPUs, buses,
operating systems, and FPGAs

• Fully integrated tool-chain support for dependency builds
and device configuration.

In this section, we introduce the Connectal framework through
a discussion of its prominent features.

3.1 Portals
Connectal implements remote method invocation between

application components using asynchronous messaging. The
message and channel types are application specific, requir-
ing the user to define the HW/SW interface using BSV in-
terfaces as the interface definition language (IDL). These in-
terfaces declare logical groups of unidirectional “send” meth-
ods, each of which is implemented as a FIFO channel by the
Connectal interface compiler; all channels corresponding to
a single BSV interface are grouped together into a single
portal.

From the interface specification, the Connectal interface
compiler generates code for marshalling the arguments of
a method into a message to be sent and unmarshaling val-
ues from a received message. It generates a proxy to be
invoked on the sending side and a wrapper that invokes the
appropriate method on the receiving side. Platform specific
libraries are used to connect the proxies and wrappers to the
communication fabric.

In the hardware, each portal is assigned a disjoint address
range. On the host, Connectal assigns each portal a unique
Linux device (/dev/portal〈n〉) which is accessed by the ap-
plication software using the generated wrappers and proxies.
An application can partition methods across several por-
tals, to control access to the interfaces by specific hardware
or software modules. To support bi-directional communi-
cation, at least two portals are required: one which allows
software to “invoke” hardware, and another for hardware to
“invoke” software. Each portal may be accessed by different
threads, processes, or directly from the kernel.

3.2 Direct user-mode access to hardware
We designed Connectal to provide direct access to accel-

erators from user-mode programs in order to eliminate the
need for device-drivers specific to each accelerator. We have
implemented a kernel module for both X86 and ARM archi-
tectures with a minimal set of functionality: the driver im-
plements mmap to map hardware registers into user space
and poll to enable applications to suspend a thread wait-
ing for interrupts originating from the hardware accelera-
tors. These two pieces of functionality have been defined to
be completely generic; no modification is required to kernel
drivers as the HW/SW interface evolves. All knowledge of
the interface register semantics (and corresponding changes)
is encoded by the interface compiler in the generated proxies
and wrappers which are compiled as part of the application
and executed in user-mode.

This approach is known as user-space device drivers [6, 7]
and has a number of distinct advantages over traditional ker-
nel modules. To begin with, it reduces the number of com-
ponents that need to be modified if the HW/SW interface
changes, and eliminates the need for device-driver develop-
ment expertise in many cases. Secondly, after the hardware

registers have been mapped into user address space, the need
for software to switch between user and kernel mode is all
but eliminated since all “driver” functionality is being exe-
cuted in user-space.

3.3 Shared Access to Host Memory
Connectal generates a hardware FIFO corresponding to

each method in the portal interface, and the software reads
and writes these FIFOs under certain conditions. To im-
prove throughput, Connectal libraries also support credit-
based flow-control. Though credit-based flow-control with
interrupts is more efficient than polling status registers from
software, there is often the need for much higher bandwidth
communication between the hardware and software.

Hardware accelerators often communicate with the ap-
plication through direct access to shared memory. An im-
portant feature of Connectal is a flexible, high performance
API for allocating and sharing such memory, and support for
reading and writing this memory from hardware and soft-
ware. The Connectal framework implements this through
the combination of a Linux kernel driver, C++ libraries,
and BSV modules for the FPGA. We implemented a cus-
tom kernel memory allocator for Connectal, portalmem,
using the kernel dmabuf support. Any solution which al-
locates and shares memory between hardware and software
must meet two high-level requirements:

• Allocated buffers must have reference counts to pre-
vent memory leaks.

• Efficient mechanisms must be provided to share the
location of allocated regions.

Using the portalmem driver, programs can allocate regions
of system memory (DRAM) and map it into their own vir-
tual address space. Reference-counted access to shared mem-
ory regions allocated using portalmem can be granted to
other SW processes by transmitting the file descriptor for
the allocated region. Reference counting has been imple-
mented in the driver so that once an allocated memory re-
gion has been dereferenced by all SW and HW processes, it
will be deallocated and returned to the kernel free memory
pool.

Simple hardware accelerators often require contiguous phys-
ical addresses. Unfortunately, when allocating memory from
a shared pool in a running system, obtaining large areas of
contiguous memory is often problematic, limiting the size of
the region that can be allocated. To support indexed access
to non-contiguous memory aggregates, Connectal provides
address translation support to hardware accelerators in the
FPGA, similar to the MMU functionality on the CPU side.

3.4 Distributed Access to Memory Ports
When building accelerators for an algorithm, multiple pa-

rameters are often accessed directly from system memory us-
ing DMA. As the hardware implementation is parallelized,
multiple accesses to each parameter may be required. In
these cases, the number of memory clients in the application
hardware usually exceeds the number of host memory ports.
Sharing these ports requires substantial effort, and scaling
up a memory interconnect while maximizing throughput and
clock speed is extremely challenging.

To support this common design pattern, the Connectal
framework provides provides a portable, scalable, high per-
formance library that applications can use to to facilitate
the efficient sharing of host memory ports. This library is

implemented as parameterized Bluespec modules which al-
low the user to easily configure high-performance memory
access trees, supporting both reading and writing.

3.5 Platform Portability
We structured Connectal to improve the portability of

applications across CPU types, operating systems, FPGAs,
and how the CPU and FPGA are connected. The software
and hardware libraries are largely platform independent. As
a result, applications implemented in the framework can be
compiled to run on the range of different platforms.

Supported platforms are shown in Figure 7. Application
software can be executed on x86 and ARM CPUs running
either Ubuntu or Android operating systems. A range of
different Xilinx FPGAs can be connected to the CPU and
system memory via PCI Express or AXI. The BSV simulator
(Bluesim) can be used in place of actual FPGA hardware for
debugging purposes.

When the target application needs to interact with other
Linux kernel resources (for example, a block device or a net-
work interface), the application may run in kernel mode with
the logic run either in an FPGA or in Bluesim.

KC705& VC707& ZYBO& Zedboard& ZC702& ZC706& Parallela&
(in&progress)&

PCIe& AXI&

x86& ARM& Bluesim&

Ubuntu& Centos& Ubuntu& Android& Ubuntu& Centos&

Zynq&
MiniJITX&

Figure 7: Platforms supported by Connectal

4. IMPLEMENTING STRING SEARCH
Having covered the features of the Connectal at a high

level, we now explain more specifically how the framework
can be applied to implement the refinements outlined in Sec-
tion 2.

4.1 Initial Implementation
The FPGA is connected to the host system with a PCIe

bus, and to the memory array with wires. In addition to
implementing a search kernel, the hardware accelerator must
communicate with the software components and with the
flash chips. Communication with the software takes place
through portals, whose interface declaration is given below:

interface StrstrRequest;
method Action setupNeedle(Bit #(8) needleChars);
method Action search(Bit #(32) haystackPtr ,

Bit #(32) haystackLen);
endinterface
interface StrstrIndication;

method Action searchResult(Int #(32) v);
method Action setupComplete ();

endinterface

The hardware implements the StrstrRequest interface, which
the software invokes (remotely) to specify the search string
and the location in flash memory to search. The software im-
plements the StrstrIndication interface, which the hardware
invokes (remotely) to notify the software of configuration
completion or search results. The interface compiler gener-
ates a separate portal for each of these interfaces. Within

each portal, a dedicated unidirectional FIFO is assigned to
each logical interface method.

In our initial implementation the accelerator does not ac-
cess system memory directly, so the search string is trans-
mitted to the accelerator one character at a time via the
setupNeedle method. We will see in Section 4.3 how to use
a pointer to system memory instead.

4.1.1 Invoking Hardware from Software
Because the StrStrRequest functionality is implemented

in hardware, the Connectal interface compiler generates a
C++ proxy with the following interface to be invoked by
the application software:

class StrStrRequestProxy : public Portal {
public:

void setupNeedle(uint32_t needleChars);
void search(uint32_t haystackPtr ,

uint32_t haystackLen);
};

The implementation of StrStrRequestProxy marshals the ar-
guments of each method and en-queues them directly into
their dedicated hardware FIFOs. To execute searches in the
FPGA fabric over data stored in flash memory, the software
developer simply instantiates StrStrRequestProxy and in-
vokes its methods:

StrStrRequestProxy *proxy =
new StrStrRequestProxy (...);

proxy ->search(haystackPtr , haystackLen);

On the FPGA, the user implements the application logic
as a BSV module with the StrStrRequest interface. A wrap-
per is generated by the interface compiler to connect this
module to the hardware FIFOs. The wrapper unmarshals
messages that it receives and then invokes the appropriate
method in the StrStrRequest interface. Here is the BSV
code that instantiates the generated wrapper and connects
it to the user’s mkStrStr module.

StrStrRequest strStr <- mkStrStr (...);
StrStrRequestWrapper wrapper <-

mkStrStrRequestWrapper(strStr);

Figure 8 shows how all the pieces of an application imple-
mented using Connectal work together when hardware func-
tionality is invoked remotely from software. Direct access
to the memory mapped hardware FIFOs by the generated
proxy running in user-mode is key to the efficiency of our
implementation strategy.

main% app%%
HW%

req::%
proxy%

event%%
lib%

HW%%
wrapper%bus%driver%

app.methodName()-

HW%%
fifos%

fifo.notFullReq()%

fifo.write()%

userIfc.methodName-()-

fifo.notFullResp)%

fifo.rdReq()%

fifo.rdResp()%

Figure 8: SW invokes HW: ‘main’ and ‘app HW’ are
implemented by the user.

4.1.2 Invoking Software from Hardware
Invoking software from hardware takes a slightly different

form, due primarily to the fact that “main” is still owned
by software. Since the direction of the remote invocation
is reversed, the proxy on this path will be instantiated on
the FPGA and the wrapper instantiated on host side. The
user implements the StrStrResponse interface in software
and connects it to the generated wrapper using C++ sub-
classes:

class StrStrResponse:
public StrStrResponseWrapper {

...
void searchResult(int32_t v) {...}

}

The StrStrResponseWrapper constructor registers a pointer
to the object with the event library which keeps track of all
instantiated software wrappers. The wrapper implementa-
tion unmarshals messages sent through the hardware FIFOs
and invokes the appropriate subclass interface method. To
activate this path, main simply instantiates the response im-
plementation and invokes the library event handler:

StrStrResponse *response =
new StrStrResponse (...);

while (1)
portalExec_event ();

On the invocation side, the interface compiler generates a
proxy which the application logic instantiates and invokes
directly:

StrStrResponseProxy proxy <-
mkStrStrRequestProxy ();

StrStrRequest strStr <-
mkStrStr (... proxy.ifc ...);

Figure 9 shows how all the pieces of an application collabo-
rate when software functionality is being invoked from hard-
ware.

main% app%%
HW%

ind::%
wrapper%

event%%
lib%

HW%%
proxy%bus%driver%

userIfc.methodName()2

fifo.enq()%

HW%%
fifos%

fifo.notEmptyReq()%

fifo.readReq()%

fifo.readResp()%

lib.portalExec_event()%

ind.methodName()2

fifo.notEmptyResp)%

Figure 9: HW invokes SW: ‘main’, ‘ind::wrapper’,
and ‘app HW’ are implemented by the user.

The simplest software execution environment for the string
search accelerator is to have a single thread making requests
and waiting for responses as follows:

void search(char *str){
StrStrRequestProxy *req =

new StrStrRequestProxy (...);
StrStrResponse *resp =

new StrStrResponse (...);
while (char c = *str++)

req ->setupNeedle(c);
// start search
req ->search (...);

// handle responses from the HW
while (1)

portalExec_event ();
}

The call to portalExec event() checks for a response from
HW. If there is a pending response, it invokes the method
corresponding to that FIFO in the wrapper class. This
generated method reads out a complete message from the
FIFO and unmarshals it before invoking the user-defined
call-back function, which in this case would be StrStrRe-
sponse::searchResult.

4.1.3 Connecting To Flash
On our target platform, the flash memory array is con-

nected directly to the FPGA chip, and DDR signals are used
to read/write/erase flash memory cells. The RTL required
to communicate with the memory requires some commonly
used functionality, such as SerDes and DDR controllers,
both of which are included in the BSV libraries distributed
as part of the Connectal framework.

4.2 Multithreading The Software
In many cases, we would like to avoid a hardware-to-

software path which requires the software to poll a hard-
ware register on the other side of a bus for relatively infre-
quent events. To accommodate this, the Connectal frame-
work generates interrupts which are raised when hardware
invokes software interface methods. The generic Connectal
driver connects these signals to the Linux kernel and the
software wrappers can exploit then by calling poll. Con-
nectal applications often use a separate thread to execute
hardware-to-software asynchronous invocations, since dedi-
cated thread can put itself to sleep until the hardware raises
an interrupt. The “main” thread is free to do other work
and can communicate with the “indication” thread using a
semaphore as shown below:

class StrStrResponse:
public StrStrResponseWrapper {

sem_t sem;
int v;
void searchResult(int32_t v) {

this ->response = v;
sem_post (&sem);

}
void waitResponse (){ sem_wait (&sem);}

};
StrStrResponse *resp;
StrStrRequestProxy *req;
int search(char *str){

while (char c = *str++)
req ->setupNeedle(c);

// start search
req ->search (...);
// wait for response
resp ->waitResponse ();
// return result
return resp ->v;

}

The polling thread is started by a call to portalExec_start(),
which ultimately invokes the portalExec_poll() function
implemented in the Connectal event library. portalExec_poll()
invokes the system call poll on the FDs corresponding to
all the indication or response portals, putting itself to sleep.
When an interface method is invoked in the hardware proxy,
an interrupt is raised, waking the indication thread. A reg-
ister is read which indicates which method is being called

and the corresponding wrapper method is invoked to read-
/marshal the arguments and invoke the actual user-defined
methods. Figure 10 shows this process.

main% app%%
HW%

ind::%
wrapper%

event%%
lib%

HW%%
proxy%bus%driver%

userIfc.methodName()%

wake_up()%

HW%%
fifos%

poll()%

disableInt()-

return()%

lib.portalExec_poll()%

signalInt()-

enableInt()-

lib.portalExec_event()%

Figure 10: HW invokes SW using interrupts

Multithreading often leads to simultaneous access to shared
hardware resources. If a software solution to protect these
resources (such as mutex) is not available, the hardware in-
terface can be refactored into separate portals, one for each
control thread.

Each interface will generate a separate Portal which is
assigned its own address space and Linux device. Using
Linux devices in this way enables access control restrictions
to be specified individually for each portal. This feature
can be used to grant different users or processes exclusive
access and prevent unauthorized access to specific pieces of
hardware functionality.

4.3 Shared Access to Host Memory
In the first three refinements presented in Section 2, all

communication between hardware and software takes place
through register-mapped IO. The final refinement in Sec-
tion 2.4 is to grant hardware and software shared access to
host memory. The interface to the search accelerator shown
below has been updated to use direct access to system mem-
ory for the search strings:

interface StrstrRequest;
method Action setup(Bit #(32) needlePtr ,

Bit #(32) mpNextPtr ,
Bit #(32) needleLen);

method Action search(Bit #(32) haystackPtr ,
Bit #(32) haystackLen ,
Bit #(32) iterCount);

endinterface
interface StrstrIndication;

method Action searchResult(Int #(32) v);
method Action setupComplete ();

endinterface

In order to share memory with hardware accelerators, it
needs to be allocated using portalAlloc. Here is the search
function updated accordingly:

int search(char *str){
int size = strlen(str)+1;
int fd = portalAlloc(size);
char *sharedStr = portalMmap(fd, size);
strcpy(sharedStr , str);
// send a DMA reference to the search pattern
req ->needle(dma ->reference(fd), size);
// start search
req ->search (...);
resp ->waitResponse ();
... unmap and free the string
return resp ->v;

}

The application allocates shared memory via portalAl-
loc, which returns a file descriptor, and then passes that file
descriptor to mmap, which maps the physical pages into the
application’s address space. The file descriptor corresponds
to a dmabuf[5], which is a standard Linux kernel mechanism.

To share that memory with the accelerator, the applica-
tion calls reference, which sends a logical to physical ad-
dress mapping to the hardware’s address translator. The call
to reference returns a handle, which the application sends
to the accelerator. Connectal’s BSV libraries for DMA en-
able the accelerator to read or write from offsets to these
handles, taking care of address translation transparently.

To fully exploit the data parallelism, mkStrStr partitions
the search space into p partitions. It instantiates two mem-
ory read trees from the Connectal library (MemreadEngineV,
discussed in Section 3.4), each with p read servers. One set
is used by the search kernels to read the configuration data
from the host memory, while the other is used to read the
“haystack” from flash.

On supported platforms such as Zynq which provide mul-
tiple physical master connections to system memory, Con-
nectal interleaves DMA requests over the parallel links. It
does this on a per-read-client basis, rather than a per-request
basis.

4.4 Alternate Portal Implementations
Connectal separates the generation of code for marshalling

and unmarshaling method arguments from the transport
mechanism used to transmit the messages. This separation
enables “swappable” application-specific transport libraries.
In light of this, a large number of transport mechanism can
be considered. Switching between mechanism requires a sim-
ple directive in the project Makefile (more details are given
in Section 5).

By default, each portal is mapped to a region of address
space and a memory-mapped FIFO channel is generated for
each method. Though software access to all FIFO channels
in a design may occur through single bus slave interface,
Connectal libraries implement their multiplexing to ensure
that each FIFO is independent, allowing concurrent access
to different methods from multiple threads or processes.

The default portal library implements the method FIFOs
in the hardware accelerator. This provides the lowest la-
tency path between hardware and software, taking about
1 microsecond to send a message. If higher bandwidth or
transaction rates are needed, FIFOs implemented as a ring
buffer in DRAM can be used instead. This requires more
instructions per message send and receive, but may achieve
higher throughput between the CPU and hardware.

During the design exploration process, a component orig-
inally implemented on the FPGA may migrate to software
running on the host processor. Remote invocations which
were originally from software to hardware must be recast
as software to software. Without changing the IDL speci-
fication, the transport mechanism assigned to a portal can
be re-specified to implement communication between soft-
ware components running either on the same host or across
a network.

Connectal uses UNIX sockets or shared memory to trans-
port messages between the application software components
or the hardware simulator. In other situations, TCP or UDP
can be used to transport the messages to hardware run-
ning on another machine. Viable connections to the FPGA

board range from low-speed interconnects such as JTAG,
SPI, to higher-speed interconnects such as USB or Aurora
over multi-gigabit per second transceivers.

5. WORKFLOW USING CONNECTAL
In this section, we give an overview of the Connectal work-

flow and toolchain. The complete toolchain, libraries, and
many running examples may be obtained at www.connectal.org
or by emailing connectal@googlegroups.com.

5.1 Top level structure of Connectal applica-
tions

The simplest Connectal application consists of 4 files:

Makefile The top-level Makefile defines parameters for the
entire application build process. In its simplest form,
it specifies which Bluespec interfaces to use as por-
tals, the hardware and software source files, and the
libraries to use for the hardware and software compi-
lation.

Application Hardware Connectal applications typically
have at least one BSV file containing declarations of
the interfaces being exposed as portals, along with the
implementation of the application hardware itself.

Top.bsv In this file, the developer instantiates the applica-
tion hardware modules, connecting them to the gener-
ated wrappers and proxies for the portals exported to
software. To connect to the host processor bus, a pa-
rameterized standard interface is used, making it easy
to synthesize the application for different CPUs or for
simulation. If CPU specific interface signals are needed
by the design (for example, extra clocks that are gener-
ated by the PCIe core), then an optional CPU-specific
interface can also be used.

If the design uses multiple clock domains or additional
pins on the FPGA, those connections are also made
here by exporting a ’Pins’ interface. The Bluespec
compiler generates a Verilog module from the top level
BSV module, in which the methods of exposed inter-
faces are implemented as Verilog ports. Those ports
are associated to physical pins on the FPGA using a
physical constraints file.

Application CPP The software portion of a Connectal
application generally consists of at least one C++ file,
which instantiates the generated software portal wrap-
per and proxies. The application software is also re-
sponsible for implementing main.

5.2 Development cycle
After creating or editing the source code for the applica-

tion, the development cycle consists of four steps: generating
makefiles, compiling the interface, building the application,
and running the application.

Generating Makefiles Given the parameters specified in
the application Makefile and a platform target speci-
fied at the command line, Connectal generates a target-
specific Makefile to control the build process. This
Makefile contains the complete dependency informa-
tion for the generation of wrappers/proxies, the use of
these wrappers/proxies in compiling both the software
and hardware, and the collection of build artifacts into

a package that can be either run locally or over a net-
work to a remote ’device under test’ machine.

Compiling the Interface The Connectal interface com-
piler generates the C++ and BSV files to implement
wrappers and proxies for all interfaces specified in the
application Makefile. Human readable JSON is used
as an intermediate representation of portal interfaces,
exposing a useful debugging window as well as a path
for future support of additional languages and IDLs.

Building the Application A target in the generated Make-
file invokes GCC to compiler the software components
of the application. The Bluespec compiler (bsc) is then
invoked to compiler the hardware components to Ver-
ilog. A parameterized Tcl scripts is used to drive Vi-
vado to build the Xilinx FPGA configuration bitstream
for the design.

A Connectal utility called fpgamake supports specifica-
tion of which Bluespec and Verilog modules should be
compiled to separate netlists and to enable separate
place and route of those netlists given a floor plan.
Separate synthesis and floor planning in this manner
can reduce build times, and to make it easier to meet
timing constraints.

Another Connectal utility called buildcache speeds re-
compilation by caching previous compilation results
and detecting cases where input files have not changed.
Although similar to the better-known utility ccache,
this program has no specific knowledge of the tools
being executed, allowing it to be integrated into any
workflow and any tool set. This utility uses the system
call strace to track which files are read and written by
each build step, computing an ’input signature’ of the
MD5 checksum for each of these files. When the input
signature matches, the output files are just refreshed
from the cache, avoiding the long synthesis times for
the unchanged portions of the project.

Running the Application As part of our goal to have a
fully scripted design flow, the generated Makefile in-
cludes a run target that will program the FPGA and
launch the specified application or test bench. In or-
der to support shared target hardware resources, the
developer can direct the run to a particular machines,
which can be accessed over the network. For Ubuntu
target machines, ssh is used to copy/run the applica-
tion. For Android target machines, ’adb’ is used.

5.3 Continuous Integration and Debug Sup-
port

Connectal provides a fully scripted flow in order to make it
easy to automate the building and running of applications
for continuous integration. Our development team builds
and runs large collections of tests whenever the source code
repository is updated.

Connectal also provides trace ring buffers in hardware and
analysis software to trace and display the last transactions
on the PCIe or AXI memory bus. This trace is useful when
debugging performance or correctness problems, answering
questions of the form:

• What were the last memory requests and responses?

• What was the timing of the last memory request and
responses?

K
C

7
0
5

V
C

7
0
7

Z
Y

B
O

Z
ed

b
o
a
rd

Z
C

7
0
2

Z
C

7
0
6

P
a
ra

ll
el

M
in

i-
IT

X

HW → SW 3 3 X 0.80 0.80 0.65 X 0.65
SW → HW 5 5 X 1.50 1.50 1.10 X 1.10

Figure 11: Latency (µs) of communication through
portals on supported platforms

• What were the last hardware method invocations or
indications?

6. PERFORMANCE OF GENERATED SYS-
TEMS

A framework is only useful if it reduces the effort required
by developers to achieve the desired performance objective.
Trying to gauge the relative effort is difficult since the au-
thors implemented both the framework and the running ex-
ample. On PCIE-based platforms we were able to reduce the
time required to search for a fixed set of strings in a large
corpus by an order of magnitude after integrating hardware
acceleration using Connectal. Performance improvements
on the Zynq-based platforms was even greater due to the rel-
ative processing power of the ARM CPU and scaled with the
number of bus master interfaced used for DMA. In the Con-
nectal framework, developing these applications took very
little time.

6.1 Performance of Portals
The current implementation of HW/SW portal transfers

32 bits per FPGA clock cycle. Our example designs run
at 100MHz to 250MHz, depending on the complexity of the
design and the speed grade of the FPGA used. Due to their
intended use, the important performance metric of Portals
is latency. These values are given in Figure 11.

The Xilinx KC705 and VC707 boards connect to x86 CPUs
and system memory via PCIe gen1. The default FPGA clock
for those boards is 125MHz. The other platforms use AXI
to connect the programmable logic to the quad-core ARM
Cortex A9 and system memory. The ZYBO, Zedboard and
ZC702 use a slower speed grade part on which our designs
run at 100MHz. The ZC706 and Mini-ITX use a faster part
on which many of our designs run at 200MHz. The lower la-
tency measured on the ZC706 reflects the higher clock speed
of the latency performance test.

6.2 Performance of Reads/Writes of System
Memory

For high bandwidth transfers, we assume the developer
will have the application hardware read or write system
memory directly. Direct access to memory enables transfers
with longer bursts, reducing memory bus protocol overhead.
The framework supports transfer widths of 32 to 128 bits per
cycle, depending on the interconnect used.

Our goal in the design of the library components used
to read and write system memory is to ensure that a de-
veloper’s application can use all bandwidth available to the
FPGA when accessing system memory. DMA Bandwidth
on supported platforms is listed in Figure12.

On PCIe systems, Connectal currently supports 8 lane
PCIe gen1. We’ve measured 1.4 gigabytes per second for
both reads and writes. Maximum throughput of 8 lane PCIe

K
C

7
0
5

V
C

7
0
7

Z
Y

B
O

Z
ed

b
o
a
rd

Z
C

7
0
2

Z
C

7
0
6

P
a
ra

ll
el

M
in

i-
IT

X

Read 1.4 1.4 X 0.8 0.8 1.6 X 1.6
Write 1.4 1.4 X 0.8 0.8 1.6 X 1.6

Figure 12: Maximum bandwidth (GB/s) between
FPGA and host memory using Connectal RTL li-
braries on supported platforms

gen1 is 1.8GB/s, taking into account 1 header transaction
per 8 data transactions, where 8 is the maximum number
of data transactions per request supported by our server’s
chipset. The current version of the test needs some more
tuning in order to reach the full bandwidth available. In
addition, we are in the process of updating to 8 lane PCIe
gen2 using newer Xilinx cores.

Zynq systems have four “high performance” ports for ac-
cessing system memory. Connectal enables an accelerator
to use all four. In our experiments, we have been able to
achieve 3.6x higher bandwidth using 4 ports than using 1
port.

7. RELATED WORK
A number of research projects, such as Lime [8], BCL [9],

HThreads [10], and CatapaultC [11] (to name just a few)
bridge the software/hardware development gap by provid-
ing a single language for developing both the software and
hardware components of the design. In addition, Altera and
Xilinx have both implemented OpenCL [12] on FPGAs [13,
14] in an attempt to attract GPU programmers.

The computation model of software differs significantly
from that of hardware, and so far none of the unified lan-
guage approaches deliver the same performance as languages
designed specifically for hardware or software. Connectal is
intended to be used for the design of performance-critical
systems. In this context we think that designers prefer a
mix of languages specifically designed for their respective
implementation contexts.

Infrastructures such as LEAP [15], Rainbow [16], and
OmpSs [17] (to name just a few) use resource abstraction to
enable FPGA development. We found that in their intended
context, these tools were easy to use but that performance
tuning in applications not foreseen by the infrastructure de-
velopers was problematic.

Some projects such as TMD-MPI [18], VFORCE/
VSIPL++ [19], and GASNet/GAScore [20] target only the
hardware software interface. These tools provide message
passing capabilities, but rely on purely operational seman-
tics to describe the HW/SW interface. Apart from the im-
plementation details, Connectal distinguishes itself by using
an IDL to enforce denotational interface semantics.

UIO [7] is a user-space device driver framework for Linux.
It is very similar to the Connectal’s portal device driver, but
it does not provide a solution to multiple device nodes per
hardware device. The portal driver provides this so that dif-
ferent interfaces of a design may be accessed independently,
providing process boundary protection, thread safety, and
the ability for user processes and the kernel both to access
the hardware device.

8. CONCLUSION
Connectal bridges the gap between software and hard-

ware development, enabling developers to create integrated
solutions rapidly. With Connectal, we take a pragmatic ap-
proach to software and hardware development in which we
try to avoid any dependence on proposed solutions to open
research problems.

Use of Connectal’s interface compiler ensures that soft-
ware and hardware remain consistent and make it easy to
update the hardware/software boundary as needed in a vari-
ety of execution contexts. The generated portals permit con-
current and low-latency access to the accelerator and enable
different processes or the kernel to have safe isolated access
through dedicated interfaces. Support for sharing memory
between software and hardware makes it easy to achieve high
transfer speeds between the two environments.

Connectal supports Linux and Android operating systems
running on x86 and ARM CPUs. It currently supports Xil-
inx FPGAs and runs on the full range of Xilinx Series 7
devices. Our fully-scripted development process enables the
use of continuous integration of software and hardware de-
velopment. Integrating software development early makes it
easier to ensure that the complete solution actually meets
design targets and customer requirements.

9. REFERENCES
[1] Bluespec Inc., http://www.bluespec.com.
[2] J. C. Hoe, “Operation-Centric Hardware Description

and Synthesis,” Ph.D. dissertation, MIT,
Cambridge, MA, 2000.

[3] J. C. Hoe and Arvind, “Operation-Centric Hardware
Description and Synthesis,” IEEE TRANSACTIONS
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 23, no. 9, September 2004.

[4] Z. G. Alberto Apostolico, Pattern Matching
Algorithms, 1997, ch. 1, pp. 7–11, mp algorithm.

[5] S. Semwal, “DMA Buffer Sharing API Guide,”
https://www.kernel.org/doc/Documentation/dma-
buf-sharing.txt.

[6] Y. A. Khalidi and M. N. Thadani, “An Efficient
Zero-Copy I/O Framework for UNIX,” Mountain
View, CA, USA, Tech. Rep., 1995.

[7] “The Userspace I/O HOWTO,”
https://www.kernel.org/doc/htmldocs/uio-
howto/index.html.

[8] S. S. Huang, A. Hormati, D. F. Bacon, and
R. Rabbah, “Liquid metal: Object-oriented
programming across the hardware/software
boundary,” in ECOOP ’08: Proceedings of the 22nd
European conference on Object-Oriented Programming,
Berlin, Heidelberg, 2008.

[9] M. King, N. Dave, and Arvind, “Automatic generation
of hardware/software interfaces,” in Proceedings of the
Seventeenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ser. ASPLOS XVII. New York, NY, USA:
ACM, 2012, pp. 325–336. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2151011

[10] W. Peck, E. K. Anderson, J. Agron, J. Stevens,
F. Baijot, and D. L. Andrews, “Hthreads: A
computational model for reconfigurable devices,” in
Proceedings of the 2006 International Conference on
Field Programmable Logic and Applications (FPL),

Madrid, Spain, August 28-30, 2006, 2006, pp. 1–4.
[Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/FPL.2006.311336

[11] Mentor Graphics, “Catapult-C,”
http://www.mentor.com/products/esl/.

[12] The Kronos Group,
https://www.khronos.org/registry/cl/.

[13] Altera Inc.,
http://www.altera.com/products/software/opencl/opencl-
index.html.

[14] Xilinx Inc., http://www.xilinx.com.
[15] K. Fleming, H. Yang, M. Adler, and J. S. Emer, “The

LEAP FPGA operating system,” in 24th International
Conference on Field Programmable Logic and
Applications, FPL 2014, Munich, Germany, 2-4
September, 2014, 2014, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/FPL.2014.6927488

[16] K. Jozwik, S. Honda, M. Edahiro, H. Tomiyama, and
H. Takada, “Rainbow: An operating system for
software-hardware multitasking on dynamically
partially reconfigurable fpgas,” Int. J. Reconfig.
Comp., vol. 2013, 2013. [Online]. Available:
http://dx.doi.org/10.1155/2013/789134

[17] A. Filgueras, E. Gil, D. Jiménez-González, C. Alvarez,
X. Martorell, J. Langer, J. Noguera, and K. A.
Vissers, “Ompss@zynq all-programmable soc
ecosystem,” in The 2014 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays,
FPGA ’14, Monterey, CA, USA - February 26 - 28,
2014, 2014, pp. 137–146. [Online]. Available:
http://doi.acm.org/10.1145/2554688.2554777

[18] M. Saldaña, A. Patel, C. A. Madill, D. Nunes,
D. Wang, P. Chow, R. Wittig, H. Styles, and
A. Putnam, “MPI as a programming model for
high-performance reconfigurable computers,” TRETS,
vol. 3, no. 4, p. 22, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1862648.1862652

[19] N. Moore, M. Leeser, and L. A. S. King, “Vforce: An
environment for portable applications on high
performance systems with accelerators,” J. Parallel
Distrib. Comput., vol. 72, no. 9, pp. 1144–1156, 2012.
[Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2011.07.014

[20] R. Willenberg and P. Chow, “A remote memory access
infrastructure for global address space programming
models in fpgas,” in The 2013 ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, FPGA ’13, Monterey, CA, USA, February
11-13, 2013, 2013, pp. 211–220. [Online]. Available:
http://doi.acm.org/10.1145/2435264.2435301

